Incremental Concept Learning via Online Generative Memory Recall
نویسندگان
چکیده
منابع مشابه
Online Action Recognition via Nonparametric Incremental Learning
We introduce an online action recognition system that can be combined with any set of frame-by-frame feature descriptors. Our system covers the frame feature space with classifiers whose distribution adapts to the hardness of locally approximating the Bayes optimal classifier. An efficient nearest neighbour search is used to find and combine the local classifiers that are closest to the frames ...
متن کاملIncremental Concept Learning for
Important reenements of concept learning in the limit from positive data considerably restricting the accessibility of input data are studied. Let c be any concept; every innnite sequence of elements exhausting c is called positive presentation of c. In all learning models considered the learning machine computes a sequence of hypotheses about the target concept from a positive presentation of ...
متن کاملDual Memory Architectures for Fast Deep Learning of Stream Data via an Online-Incremental-Transfer Strategy
The online learning of deep neural networks is an interesting problem of machine learning because, for example, major IT companies want to manage the information of the massive data uploaded on the web daily, and this technology can contribute to the next generation of lifelong learning. We aim to train deep models from new data that consists of new classes, distributions, and tasks at minimal ...
متن کاملIncremental Classifier Learning with Generative Adversarial Networks
In this paper, we address the incremental classifier learning problem, which suffers from catastrophic forgetting. The main reason for catastrophic forgetting is that the past data are not available during learning. Typical approaches keep some exemplars for the past classes and use distillation regularization to retain the classification capability on the past classes and balance the past and ...
متن کاملIncremental learning with temporary memory
In the inductive inference framework of learning in the limit, a variation of the bounded example memory (Bem) language learning model is considered. Intuitively, the new model constrains the learner’s memory not only in how much data may be retained, but also in how long that data may be retained. More specifically, the model requires that, if a learner commits an example x to memory in some s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2020
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2020.3010581